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A microscopic explanation of the departures from the statistical kinetic theory of rubber elasticity is given 
using a topological description of entanglements. This is accomplished in terms of linking numbers which can 
be topologically def'med between pairs of entangled polymer molecules. A statistical mechanical treatment of 
the linking numbers is presented and an expression derived for the elastic modulus of an entangled coil. Our 
results show the expected deformation softening in both uniaxial extension and compression. We identify the 
dependence of this behaviour on the density, the entangling ability of the molecule and on the details of 
fabrication of the network. We also show that, with the framework of the concepts developed in the paper, the 
deformation softening behaviour implies that the system is under-entangled with respect to an intrinsic degree 
of entanglement characteristic of the system. This intrinsic degree of entanglement is defined in the paper and 
for states of entanglement exceeding this quantity a deformation hardening is predicted. 
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1. INTRODUCTION 

Numerous experimental studies on rubber networks have 
demonstrated significant departures from the statistical- 
kinetic theory of rubber elasticity. The experimental 
stress-strain data invariably show a deformation 
softening effect in elongation. The major source of these 
deviations from the statistical theory is thought to be due 
to the high degree of inter-chain entanglement which 
naturally occurs in the concentrated amorphous state. 
Recent reviews on the current experimental and 
theoretical status of rubber elasticity have been given by 
Mark 1 and Staverman 2. 

An immediate explanation for some change in the 
modulus can be given, in terms of the classical theories of 
rubber elasticity. In the early work of Kuhn, the network 
junction points were assumed to be firmly embedded in 
the surrounding medium and to move affinely with the 
strain. The later work of Guth and James leaves the chains 
and junction points entirely free to move through each 
other (phantom network). For a tetra functional network 
the modulus predicted by the affine model can be twice as 
large as that predicted from the phantom model. This had 
led Flory 3, Ronca and Allegra 4 to argue that despite the 
copious entanglements present in a network of polymer 
molecules, the effect on configurational changes is 
unimportant and that the full force of entanglements is felt 
in restricting the fluctuations of the network junction 
points. The theory is phenomenological to the extent that 
the influence of the entanglements on the range of the 
junction fluctuations depends on the deformation. The 
other approaches to modelling entanglements takes the 
complementary view, emphasising the confining effect 
that they have on the configuration of the chains by means 
a 'tube' constructed round a 'primitive path'. These ideas 
are due to de Gennes 5, Edwards and co-workers 6 and 
have been developed by Marrucei 7, Edwards et al. 8 have 
also developed a slip link model to account for the 
deformation softening effects. 
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In the review 1, Mark has presented clear evidence 
obtained from well characterized polydimethylsiloxane 
networks for a deformation induced transition from the 
affine to the phantom network limit. This is in accord with 
the Flory theory of entanglements having little effect on 
the configurational properties and only being effective at 
junction points. However, in sharp contrast to this 
conclusion is the work of Dossin and Graessley 9 on 
polybutadiene networks in bulk and solution and Pearson 
and Graessley 1° on ethylene-propylene copolymer 
networks. They show that a topological contribution, as 
measured from the plateau modulus and assumed to be 
trapped when the network was formed, dominates in these 
systems. The values of modulus that they obtain are 2.5 to 
6.5 times larger than kT/V, which is the maximum 
contribution possible from the chemical network. Similar 
results have also been found on a variety of polymers by 
Gottlieb et al. 11, Kramer12 and by Ferry and coworkers 13. 
In particular, Ferry has shown that, by crosslinking 
entangled networks of polybutadiene in strained states 
near Tg, a two network systems is formed with different 
reference states from which the moduli due to entangle- 
ments and crosslinks can be found. Their results 
demonstrate that the entangled network is neo-Hookian 
and that the entangled network is described by the 
Mooney-Rivlin equation. 

In this paper we hope to partially reconcile these 
varying experimental results by calculating the entropic 
properties of a polymer molecule entangled in a random 
network. The degree of entanglement will be described by 
the number of times one random coil molecule can wind 
round, or entangle, with another random coil. We denote 
this winding or linking number by 'm' and insist that it 
remains unchanged during any subsequent con- 
figurational changes i.e. is a topological invariant. Then 
the deviations of the elastic properties of the coil from the 
Neo-Hookian behaviour are found to be governed by the 
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coefficient 

k Tp2~(1 - m2/( m2~ ) (1) 

where p is the macroscopic density of the network, (m2~ 
an equilibrium winding number, which will be defined, 
and ~ a characteristic of the local entangling ability of the 
molecule ((m2) and a are related). We will show that 
networks deliberately formed so that m2<(m2) will 
exhibit a deformation softening. The condition m 2 < (m2~ 
may be regarded as under-entanglement and corre- 
spondingly for over-entanglement m 2 > (rn2~ we predict a 
strain hardening effect. Since crosslinking interferes with 
the entangling process by trapping coils and thereby 
permanently fixing in their topological properties, we may 
also anticipate that in many rubber networks formed 
under normal conditions m 2 #  ( m 2 ) .  However, for those 
systems that can achieve this intrinsic linking number 
(m2), then the Flory contention that entanglements do 
not effect the elastic properties derived from the con- 
figurational properties will be justified. In this paper we do 
not comment on the effects of entanglements on the 
fluctuation of crosslink points. 

2. A WINDING NUMBER DESCRIPTION 
OF ENTANGLEMENTS 

The classical theory of rubber elasticity starts by calculat- 
ing the number of degrees of freedom f~0(R s) available to 
a strand of the molecule which is held a distance _Rapart 
between two junction points separated by an arc length s 
along the chain. The result is well known and written as 

~o(_R, s) = ZN(3/2rcls) 3/2 e x p -  3R2/21s (2.1) 

where Z is the number of ways each link of statistical 
length l can be added to the chain (Nl=s). The only 
modification to this theory that we wish to consider in this 
paper is that due to the reduction in the number of degrees 
of freedom by the topological entanglement of this strand 
with the rest of the network. Our model is shown 
schematically in Figure 1, where the strand we are talking 
about is drawn in a heavy line C,, while the rest of the 
network is represented as a continuous random walk coil 
C/~ (thin line) filling a macroscopic box at a finite density 
Pt~. We will take the degree of topological entanglement of 
these two curves to be given by the number of times C~ is 
linked to Ct~ and denote this entangling or linking number 
by 'm'. The linking number is given as the value of the 
following integral, proposed by Gauss and first used by 
Edwards ~4 in the context of polymer physics 

1 
I=tj(C,,Ct~)=4x d& dstji_(s 3 x f(sa). 

c:~ cf~ 

The notation is illustrated in Figure 1, with /'= dr/ds as 
the tangent vector to the curve. 

We will treat the winding numbers of the C~ coil with 
the network (averaged over all configurations) as gaussian 
random variables. Then the probability that the C~ 
configuration is entangled 'm' times with the network is 
given by the Gaussian distribution 

m 2 
p(Cgm)={2rcM2(C~)}-~/2exp 2M2(C~ ) (2.3) 

I 
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Figure I The theory presented in the paper calculates the elastic energy 
of the strand shown in a heavy line and labelled C~. The rest of the elastic 
network is represented by the dotted line C a and provides the 
topological constrain on the C~ configuration ( ): C~ (elastic 
strand); ( . . . . . .  ): C~ (network) 

where M2(C,) represents the fluctuation of winding 
numbers of the C~ coil and is given by 

cab I,~(C,, /c,~ (2.4) 

An explicit expression for M2(CrL ) is given in Appendix (1). 
The influence of the weighting factor in equation (2.3) 

on the random coil statistics of the C~ configuration 
represents a very difficult problem which has been 
considered in previous work 15 as well as a more 
systematic derivation of equation (2.3). It is not our 
intention here to pursue the theoretical aspects of this 
problem instead we will work at a level of approximation 
that leads to the effect of entanglements on the free energy 
as being additive. We will replace the configuration 
dependent quantity M 2 (C~) by an averaged value ( m2~ R,~, 
where the averaging is done over all the configurations 
{C, } subject to the constaints that r(sl)-r_(s2)=_R, i.e. 

( m2) R~=( M2(C~)}I,. :.,. _,. = R (2.5) 

so that the distribution equation (2.3) of winding numbers 
becomes 

1 m 2 
p(C~,;m)=p(.R.,s;m)=~2~(m2~R..~l/2, , : • exp 2(m2) R~ 

(2.6) 

An expression for (m 2) R.~ is given in Appendix (2). Finally 
we take as the number of degrees of configurational 
freedom of a coil held at distance _R apart between two 
junction points and entangled 'm' times with the network 
the following product of factors 

~(R, s;m)= ZU Go(_R, s)p(_R, s; m) 
=QoCR, s)p(_R, s; m) (2.7) 
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Before investigating the consequences of this form for 
the free energy we need an additional refinement of the 
model illustrated in Figure 1. In particular we wish to take 
into account the fact that the test coil C~ will be subject to 
many independent entanglement constraints. In reality 
we should specify, in terms of winding numbers, the 
topological relationship between our test coil and every 
other loop in the system. Of course in order to make the 
problem tractable and in particular to maintain the 
topological nature of the constraint we are forced to deal 
with the rest of the system in the simplified way that we 
have described. However by filling the macroscopic box 
with a single long loop of polymer material we allow a 
large amount of winding number cancellation due to the 
single loop threading backwards and forwards through 
the area spanned by the test loop. To avoid this we 
consider that the test loop is subject to Arc independent 
entanglement constraints, specified by the linking num- 
bers ma, fl = 1"" N~. Arc is then a parameter of our model 
which we are really not in a position to calculate. This 
would require a more detailed treatment of the system, 
including cross links and network structure, than we can 
give in this paper, a simple estimate of N¢ that ultimately 
accords with experiment may be obtained by the 
following argument: the volume occupied by the test coil 
C~ will be ~ (Nl2) a/2 and if we consider that this is also 
threaded by Arc other independent polymer strands, then 
we can estimate that within this volume the density p of 
monomer units is 

p "~NcN/(NI2) 3/2 (2.8) 

and so we estimate 

Nc ~pl3x/~ (2.9) 

The importance of this estimate will be seen later in 
equation (3.3) when we show that deviations due to 
entanglements from the classical theory are proportional 
to the combination of terms 

pNc/v/N 

With our estimate for N c, the deviations are independent 
of molecular weight and proportional to p2. 

To accommodate this aspect of the problem without 
going into details of network structure etc. we envisage 
filing or macroscopic box with Nc loops each at a constant 
density pa with Ncp,=p. Since the entanglement 
constraints are independent we use a product of factors 
similar to equation (2.7), so that the number of degrees of 
freedom is given by 

Nc 

f~(_R, s; {ma})=f~o(_R, s) I-Ip(R,s;ma) (2.10) 
/~=1 

and the free energy 

F(_R, s; {m/~}) = Fo(_R, s) + 

where F 0 is the free energy in the absence of any 
topological constraints. 

With these approximations the entanglement con- 
tribution to the free energy (and hence the elastic 
properties) is additive and entirely controlled by the 
functional form of (m2)R,s. To recap this represents the 
average of the (winding-number) z of two coils, one of 
which is held a distance _R apart between chain points Sl 
and s2 and the other fills a box at a uniform density. In 
Appendix (2) we have derived the following expression for 
(m2~R,s 

(m2)R,s=(m2){ 1 /l* 1 /R E ) + X / ~  ~ - f f ' l ( R ) ~  (2.12) 

where (m 2) represents the average (winding number) 2 
between the two coils in the absence of any constraint 

( m 2) = ( I=2~(c~, ca)) {ca},{c~} (2.13) 

whereas 

m 2 2 ( )8.~=(I;~(c=,c~))(c,I:{c=1.~._~=8 (2.14) 

The quantity 1" is a new short distance length scale (~/) 
we are forced to introduce in order to describe the local 
structure of the polymer with regard to its ability to 
entangle. In particular the average winding number is 
related to l* by (Appendix 2, equation (8)). 

= 3--~-~ (2.15) 

If we define a new parameter m o by 

2 __ Pf113 
mo-- 3 ~  X / ;  (2.16) 

then ( m 2) = Nm 2. 
This assigns to mo and entanglements a similar role to 

that played by I and the size of the molecule, through the 
relation 

( R 2) = Nl 2 

In both cases all local detail is encapsulated in a minimal 
parameter such as l or l*. Finally the function I(R) 
appearing in equation (2.12) is also defined in Appendix 
(2) by an integral expression for which an analytic form 
does not seem to be available. However for large R it turns 
out to be only logarithmically dependent on R. Thus the 
linear R dependence is the dominant feature in equation 
(2.12). In the next section we investigate the consequences 
this form for (m2)R~ has on the elastic properties of the 
coil. 

3. ELASTIC PROPERTIES 

The free energy of the entangled coil (7= is given by 
equation (2.11). The derivation of the elastic properties 
now follows in the usual way. We ignore the difficulties 
associated with the role of the network and deformation 
and consider _R to be related to the vector _R o between 
junction points by 

R=2=" Ro (3.1) 
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where 2__ is the deformation tensor. For the case of simple 
extension or compression at constant volume we set 

R 2 ( 2 2 + 2 2 - 1 )  
- 3 R~ (3.2) 

then the tensile force per unit undeformed area is given by 

dF 
a = ~ - ( R ,  s; {ma}) (3.3) 

where ¢/V is the number of active strands per unit 
volume. Using equation (2.11) for the free energy we can 
write 

~ kr  N~ ~1_ 1 ~ m~ }dF 
a - a ° = V  2 (m2)R.~ [ Nc,=,(m2)_R.~ -~  (mz)5'~ 

(3.4) 

where ao is the Hookean result 

R2° (2-2 -2) (3.5) 
a o = kT. V NI 2 

get 

O'*  - - 0 "  0 ~ "~-7 " ~  K I  v x/N ~/NI 2 

I 
X { ' -- N-I- ;__gl (mm#-mm#-Tx-)) } x/22 ...f_ 22 _ 1 (3.11) 

This might be regarded as the major qualitative result of 
this paper. The deviations due to entanglements from the 
classical theory of rubber elasticity are entirely contained 
in the term (22 + 22-1)-  1/2. This has the form of a broad 
maximum at 2 = 1 and falls off slowly in compression as 
(2-1)-  ~/2 and is linear in 2-  ~ in extension for 2 >> 1. These 
features are confirmed by an exact evaluation of equation 
(2.12) based on the full form for I(R) given by equation (16) 
in Appendix (2). The result is shown in Figure 2 and agrees 
qualitatively with the experimental results of Gottlieb 
et al. ~ 

The linear dependence on 2 -1 in extension is 
reminiscent of the phenomenological equation proposed 
by Mooney and Rivlin to account for the departures of 
rubber elasticity from the statistical theory. They wrote 

An expression for (m2)Rs has already been presented 
in equation (2.12), where' we pointed out that the 
dominant dependence of (m2)R~ on R was linear. For 
the purpose of discussing the qdalitative influence of this 
term on the elastic properties we will treat the functional 
form as being exactly linear and write 

m { (m2)#~=(m 2) 1 + I  ~ X / ~  w / ~  (3.6) 

where the function I(R)=I is treated as a constant. The 
final results will be presented using a full numerical 
evaluation of equation (2.12) but do not show any 
significant difference. 

Using equation (3.2) for R we can write 

(m2)~.5.s=(m 2) 1 +  " " /NI 4 3 

o 

O'* -- 2 -- 2 --~-= 2C1 + 2C2/2 (3.12) 

While our result is significantly different from this over the 
whole range of deformations, we can in the limit 2 ~> 1 
approximately identify the Mooney-Rivlin constant C2 
a s  

Nc kT. 1-  I (3.13) 

This expression for C2 has three features worth 
commenting on: 

(i) it depends quadratically on the density since the 
number of active strands per unit volume ~/Vis clearly 
proportional to the density and for the number of chains 

(3.7) 

For deformations 2 < V ~ ,  the second term in the 
bracketed expression of (m2)8~ is small ( ~ N  -1/2) 
compared to the first term (~  1). When this term is not 
differentiated with respect to 2 we will approximate it as 

m 2 ( ) B,,,"(m2) (3.8) 

and write 

1 dF/mz \ I /l* /2R2o 2 - 2  -z 
~ - ~ - \  /~'Bo,.' = x / ~ ' k / 7 " ~ / 3 ~  x/22 + 22-, 

(3.9) 

It is usual to write the reduced stress o* or modulus as 

a* = a / ( 2 -  2 -2) (3.10) 

so that using equations (3.9) and (3.10) in equation (3.4) we 

== 
1.0 

_g 

I i I 
0.0 0.15 1.0 1.5 2.0 

Figure 2 The reduced stress or modulus calculated numerically from 
equations (2.12, 3.4) plotted as a function of the (deformation)-1 in a 
uniaxiai test. Approximate Mooney-Rivlin hehaviour is shown in 
extension (2- t < 1) 

POLYMER, 1985, Vol 26, August 1137 



Rubber elasticity of entanglements." M. G. Brereton and M. Filbrandt 

Nc pervading the volume of a single chain has already 
been plausibly estimated in equation (2.9) to be given 
approximately by 

Nc ,.. pl 3 

(ii) C2 depends on the local atomic ability of the 
molecule to entangle through the parameter l* which was 
related in section 3 to the average (linking number) 2 of a 
coil of N segment by 

(iii) The factor of 

in the expression for C2 depends explicitly on the actual 
distribution of linking number {m a } present in the system. 
This will depend on the conditions and method of 
preparation of the network and may well explain the 
sensitivity of the C2 term to these features. In particular if 
during the fabrication of the network the degree of 
entanglement can be maintained at or close to the 
characteristic value (m2), defined in section (3) equation 
(3.7), then the Mooney-Rivlin term should be largely 
absent. 

This result would also seem to confirm an opinion of 
Flory, which has also been expressed by Prager and 
Frisch 16 that it is probably better to assume that the 
attractive and repulsive effects of entanglements just 
cancel and to ignore their influence on the elastic 
properties altogether. In all of this work we have not dealt 
with the influence of entanglements on the fluctuations of 
network junction points, however, under circumstances 
when the configurational effects are minimal, i.e. 
m 2 = (m2), the entanglement restricted junction theory of 
Flory may well be justified. For networks specifically 
prepared in controlled circumstances we can expect that 
the ensemble averaged m 2 of linking numbers {ma} will 
not be equal to the value (m2). This latter quantity 
represents the intrinsic degree of entanglement between 
two unrestricted random walk molecules. In these systems 
for which m 2 ~ ( m 2 ) ,  then we can expect a topological 
contribution to the C2 term. Furthermore, as only 
positive values of C2 seem to have been reported in the 
literature, our result would imply that in the majority of 

2 2 cases of network preparation m < ( m  ). In other words 
an under-entangling, rather than over-entangling 
((m2)(m2)), is generally achieved within the context of 
the formalism and expressions we have developed in this 
paper. 

CONCLUSION 

We have described the topological aspect of polymer 
chain entanglement by means of a Gaussian distribution 
of linking numbers. The important quantity (m2)R,s 
representing the average (linking member) 2 of two 
random coils was calculated using a topological result due 
to Gauss. This term leads to deviations from the classical 
theory of rubber elasticity and suggests why such 

deviations as measured by the Mooney-Rivlin coefficient 
C2 are sensitive to the method of preparation of the 
network. For experimental situations reported in the 
literature which invariably show a positive C2 term, we 
showed that this implies that these systems are under 
entangled with respect to an intrinsic degree of entangle- 
ment (m 2) characteristic of the particular system. It 
would clearly be interesting to produce an over entangled 
situation which should then show a negative or strain 
hardening C2 term. For systems where the degree of 
entanglement fabricated into the material by the cross 
linking process corresponds to the intrinsic entanglement 
number (m2), then the topological contribution to the 
Mooney-Rivlin term will vanish. However, we have not 
considered in this paper the effect of entanglements on the 
fluctuation of the junction points. Under these circum- 
stances the theory of Flory may well apply to give a 
contribution in addition to the topological result. 
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APPENDIX A 

The average o f  I 2 

The winding number I=a between the chains C~ and C a 
from equation (3.1) can be written in the form of a line 
integral 

I~1~ = ~drG'Aa(~) (A.I) 

c, 

where the vector field _A a (R) is given from equation (3.1) as 

_Aa(R ) = (4re)- ' ~ d_r a x (Za--R-------~) 
I~s-_R[ 3 

CI~ . .  

(A.2) 

The averaging over the configurations of C~ and C a ofl2a is 
given by 

(Z=a) c=,c~ = (dr_=,dGj(_Aa,(L,)-A~j(r-~)) ~)~, 

C= Cp 

(A.3) 

where i andj label the Cartesian coordinates of the vectors 
dr_ and_A a CR). In section (2) of the paper we have identified 

M2(C, ) =(12a){ca} 

The average of the fluctuations (_A (_R)_A (_R')) of the vector 
field _A are most easily dealt with by exploiting an analogy 
with electromagnetism. We can observe that if C a 
represented a line of magnetic flux, then _AaCR ) would be 
the vector potential due to this flux line. The flux line is 
given by Curl _A which from equation (A.2) is given by 

Curl _Aa (R__.) = (~d~6(r~ - _R) = _U(_R) (A.4) 

C# 

_U(R) is the density of//-chain bond vectors at the space 
point _R and is the analogue of the magnetic flux _B(R). 
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Using the random walk model for a polymer chain we 

can readily evaluate the fluctuations in the Curl A(__R) 
field, the result is 

({_V x _AI~R)},{_V x A(_R)}i)~ =pf125(_R-R')6,s (A.5) 

and in terms of the Fourier transform _A(q) of A(R), 
equation (A.5) reads 

~ , ~ , 2 3 , ( {q x A(q)} ~{q x _A(q )}j) ~ = pfl (2~) 5(q + q )60 (A.6) 

For closed loops we also have the condition that 
_ACR)=0 and consequently the desired average of the 
fluctuations of _A can be found from equation (A.6) as 

(A,(q_)Aj(q'))cfl-=pfl2(2E)a5(q4-~')~---~ [5i1--4~41 ] (A.7) 

where q_" is the unit vector q/Iql. Using this result (I2~)c=,c~ 
can be written as 

pl2 ; ; ~,( d~=dr'1~ 
3 JJ  u - - 

C~ C= 

xj (~)3expiq ,  r(~_6)[5u 4~]_) ~= (A.8) 

The q integral can be done and gives the Oseen tensor 

f. 
to(r ) = (2~z)-3 jd~q exp iqr[6~- q,%]/q2 

=(87rr)- '[ 6q + F, Fs] (A.9) 

Therefore we obtain the result in this paper as 

~ l~2~) %~= ~ ~(  dr" T(r_- r_')'dr')c= 
C= ('a 

_ pf1224rc ~ds ~)us~ ~'~ ,(f(s)'l_fZ_~i(s') 

C= C a 

/.(r--r')r'i(f--r')~ 
-t ir_r,[ 3 j (A.10) 

APPENDIX B 

7he evaluation of(m2)R.s 
From equation (2.5) and equation (A.10) of Appendix A, 

we have that 

(m2)R.~=(mZ(C~))%q-,,=R 

= ~ ds ds'(f'T~-r')'dr')co~g~v) (a.1) 

C~ 

where G0(_R, N) signifies that the averaging is to be carried 
out over a Gaussian distribution of chain vectors with 2 
points on the chain a distance L apart held at the fixed 
_R apart. The combination r' T- r' with the tensor T given 
by (3.4) can be written as (see equation (8) of Appendix A) 

pl 2 ~ d2q (qxr])'(qxf_') 
3 j(ff~-3 - q4 exp~/" (r-r_ ')  (B.2) 

It is sufficient to split the average in (B.1) into an average 
over the term (.q x r_'). ~q x r_") containing only the bond 
vectors r_',r_" and a separate average over the term 
exp iq_. ~-r_r_') involving only the coordinate vectors r_, r_'. 
We use the following results: 

( (q x O'(q x f')) aolRz~ 
q2 

R 
+ ~ -  (1 - c o s  2 0) (8.3) 

where 0 is the angle between q and R, and 

(exp iq" (L-  r_'))~0 = e x p [ -  q2 I s -  s'll 
k 6 

The 5(s-s') in equation (B.3) gives rise to a cut-off 
dependent term. We can see this more directly by 
evaluating the unrestricted linking number (m2),  given 
by 

(m 2) =( M2(C=)){c=} 
2 pfl2 f . ,  , , /  i'f' \ 

-3 ~-nn ~ e s a s \ ~  2{c=} (B.5) 
C= 

For the random coil model, the correlation of bond 
vectors shows no local monomer structure and is given by 

( f_(s)" f_(s')) = I6(s- s') (B.6) 

The denominator in equation (B.5) is singular at s = s' due 
to the factor Ir-r'1-1. The formula equation (B.5) for 
(m 2) we are using is analogous to the self inductance of an 
electrical circuit. In fact in this approach the average 
(winding number) 2 of the C, coil with the uniform 
background is a measure of the self inductance of the C~ 
coil. In the electrical case a small distance cut-off occurs in 
the form of the thickness of the wire. However, in our case 
we introduce a cut off I* by modifying 

Then 

with 

With this cut off procedure 
write equation (B.1) as 

Ir - r_'l---~x/(r- r') z + ll* (B.7) 

1 p#l 3 L =Nm2 (B.8) 
(m2) =36 

2 i 3 /1  mo=-f~n p fl ~/~ (B.9) 

and using (3) and (4) we can 

2- 2 pl2 R2 fd  f d c o s 0  
m ) 5 . , - N m o =  ~ Lz s ds' dq (2702 

(1 -cos  20 2Ll)  )-SN  

(B.10) 

where t = I s -  s'l. 
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The angular  integrations over 0 are s tandard and yield 
the Bessel functions J3/2, JI/2. 

m 2 2 2 pl 2 R 

L 

F [" dsds' {" 2 Ll 1 - t/L 
//;---~,, / d z e x p - z  
L J l s - s  [ J 6R 2 t/L 

0 0 

(B.11) 

where 
Rls- s'lq 

L 

The integral over q (or z) is accomplished in terms of  the 
degenerate hypergeometric  function M(a, b, z) e.g. 

® 1 
I dz z -  3/2Ja/2(g ) exp - Z2/4o~ = ~ M ( ½ ,  5/2, - ~) 

J 3~/2~t 
o (B.12) 

where 
3R 2 Is-s'l 

o~ = 2Ll L -  I s -  s'[ 

Finally, we can write equat ion (B.14) 

m 2 { ~ I ' ~ R 2 x ~ N N  } ( ) . , ~ = ( m 2 )  1+ T N-~ I(R) 

where 
O9 

I(R) = 
X/no X/~l 2Ll 

+ ~ 3 R  2 

x {  M(½,5/2' - ° O -  L-~I2 M(½,3/2, -~t) 

The r ight-hand side of  equat ion (B.11) becomes 

x/~ pl 2 R f ~ { M ( ½ , 5 / 2 , _ ~ )  
9 (2/r) 3/2 L 

Ll ] ds ds' 
M(½, 3/2, - e ) ~  R 2 ) l s - s l  

(B.13) 

The ds ds' integrals can be transformed to a single integral 
over the variable ~t and the final result written as 

4 pl a ~ R 2 
(m2>R.,--Nm2=-~ x/~ (2z03/~- V / ~  

f d0t 1 
× V/~ 1 + ct2Ll/3RZ 

0 

(B.14) 

(a.15) 

(B.16) 
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